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Abstract

An acoustic generation of noise by a larger human blood vessel and noise transmission in the thorax is modelled and

studied. In making this, the random statistical nature of the noise sources, the basic vessel properties and the main

features of the human chest structure are taken into account. Also the effects of changes in the basic vessel parameters

are considered as a first approach to study acoustic effects of a vascular stenosis. The analysis of the resultant acoustic

field reveals its similarity to the acoustic fields recorded in the appropriate experiments. The variations in the basic

vessel parameters are found to cause the corresponding changes in the sound level and the production of new frequency

components in the acoustic power spectrum. The acoustic power from a slightly thickened vessel is shown to be

approximately proportional to the fourth power of the flow Reynolds number in the originally normal vessel and the

eighth power of the ratio of the vessel diameters.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The noninvasive acoustic diagnosis of stenotic obstructions of vessels is of a great concern to the medical clinician. It

uses the noise field induced in vessel and perceived at the skin surface as sounds (Duncan et al., 1975; Lees and Dewey,

1970; Mirolyubov, 1983; Young, 1979). The essential measurements are the spectral and correlation characteristics of

the sound field from which information about stenosis (such as the presence, location, shape, characteristic dimensions,

etc.) can be obtained. However, the quantitative diagnosis of a stenosis is only possible if the fundamental mechanisms

of vascular sound generation and transmission are known. There exist a number of studies (Borisyuk, 1998, 1999, 2000;

Duncan et al., 1975; Fredberg, 1974, 1977; Lees and Dewey, 1970; Mirolyubov, 1983; Young, 1979), which suggest that

the most probable sources of sounds associated with blood motion are turbulent pressure fluctuations in the flow.

With the sources known, an acoustic model of an appropriate vascular district of the human blood passages can be

developed. Such a model must correctly describe the rheological properties of blood and the nature of the flow in the

vessel, the physical and geometrical characteristics of the vessel, a stenotic obstruction, the structure and physical

properties of the human body, etc. As a result, it must correctly describe the acoustic generation and transmission of

noise from the source to the receiver resting on the skin and, therefore, correctly predict the relationships between the

characteristics of the source and the recorded signal which is necessary for solving the inverse problem (viz. locating

pathology by changes in the characteristics of the noise field picked up periodically from the chest surface of a given

patient).

Analysis of the scientific literature shows that the creation of an acoustic model of a separate blood vessel is still far

from complete. To the author’s knowledge, at present only a few works (Borisyuk, 1998, 1999; Vovk et al., 1994a, b;
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Nomenclature

a radius of pipe midsurface

anðoÞ response term for the nth normal mode of pipe

jAvnðkzÞj2 shape functions

c sound speed in fluid

c0 sound speed in acoustic medium

cv longitudinal wave speed in pipe wall

d inner diameter of thickened pipe

D inner diameter of conditionally normal pipe

Dv bending stiffness of pipe wall

Ev Young’s modulus of pipe wall

f frequency

h thickness of pipe wall

H height of cylinder and length of pipe

Dh thickening of pipe wall

k0 acoustic wavenumber

k0m wavenumber of the mth acoustic mode

kvn wavenumber of the nth normal mode of pipe

kz wavenumber in the flow direction

PðoÞ power spectrum of turbulent wall pressure

p0 acoustic pressure

pt turbulent wall pressure

Pwðr; z;oÞ spectral density of radial acceleration in acoustic wave

R radius of cylinder

ReD Reynolds number of mean flow in normal pipe

r; z radial and axial coordinates, respectively

S severity of pipe narrowing

t time

u mean flow velocity in thickened pipe

U mean flow velocity in normal pipe

Uc convective velocity in normal pipe

v
*

friction velocity

wr radial acceleration in acoustic wave

Z0m acoustic modes

Greek letters

a0m radial wavenumber

m0 damping coefficient in acoustic medium

n kinematic viscosity of fluid

nv Poisson’s ratio of pipe wall

P acoustic power

r mass density of fluid

r0 mass density of acoustic medium

rv mass density of pipe wall

Fpðkz;oÞ wavenumber–frequency spectrum of turbulent wall pressure

Fpn
ðoÞ excitation term for the nth normal mode of pipe

Fp*
ðkz;oÞ wavenumber–frequency spectrum normalized to unity

CvnðzÞ in vacuo normal modes of pipe

o circular frequency

om cut-off frequencies

ovn in vacuo natural frequencies of pipe
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Wang et al., 1990; Wodicka et al., 1989, 1990) can be reported in which the simplest such models are introduced, some

of them being the models of a larger airway of the human respiratory system (Vovk et al., 1994a, b; Wodicka et al.,

1989, 1990). (However, these models can be easily adapted to the case of a larger blood vessel for the corresponding

parameter values.) Although undoubtedly important, these works have, however, significant disadvantages, namely, in

the model suggested by Wodicka et al. (1989, 1990) the source of sound is given by an infinite circular cylinder with an

inner determined loading, and the body is introduced as an infinite homogeneous medium of known density, sound

speed and damping coefficient. The disadvantages of such an approach are that it does not take into account either the

finiteness of the vessel and the human thorax or the random statistical nature of fluid loading, as well as the vessel

elasticity.

A few years later Vovk et al. (1994a) have outlined a simple qualitative model which looked much similar to that

developed by Wodicka et al. (1989, 1990).

In the more recent paper by Vovk et al. (1994b), two finite coaxial circular cylinders, with random turbulent pressures

at the surface of the inner cylinder, were considered. This is a more realistic approach compared with the one above.

However, here the authors have not considered both the presence of a stenotic obstruction and the elastic properties of

the vessel wall. A vessel was treated as the massless fluid–body tissue interface. In addition, they have used the Corcos

model (Corcos, 1963) for turbulent wall pressure fluctuations, the disadvantages of which are well known (Borisyuk,

1993; Borisyuk and Grinchenko, 1997; Martin and Leehey, 1977).

Wang et al. (1990) have made an attempt to describe a vascular stenosis. Their model consisted of two finite, isolated

elastic cylinders, joined in series and excited by inner random turbulent forces. One cylinder simulated an arterial

stenosis, and the other was a post-stenotic segment of an artery. In general, such an approach looks interesting.

However, it requires some clarifications and completions to be made. Namely, the difference in the wall bending

stiffness of the stenosed and normal segments of the vessel should be taken into account. Also both the boundary

conditions for the cylinders and the turbulent wall pressure field, as well as the influence of the body tissue on the sound

field need to be described more adequately.

A model developed by Borisyuk (1998, 1999) has taken account of the above-mentioned basic features of the

acoustic generation and transmission of noise in the human chest from the source to the receiver, and permitted

consideration of a simple stenotic narrowing in the vessel. The acoustic power spectra produced by conditionally

normal and narrowed pipes were studied, and some characteristic signs of the presence of vessel constriction have been

found.

The present work further develops this model by including mass and elasticity of the vessel wall, as well as by

considering flow–structure interaction and more realistic boundary conditions. The paper consists of five sections and a

list of references. The formulation of the problem and the appropriate assumptions are made in Section 2. The

analytical solution for the acoustic field in the thorax is constructed in Section 3. Predictions for the acoustic field

generated at some typical conditions and the analysis of the field are carried out in Section 4. Finally, the conclusions of

the investigation are made in Section 5.

2. Formulation of the problem

Precise modelling of vascular sound generation and transmission in the body is difficult. However, noting that the

characteristic scales and dimensions of the basic factors which specify these two mechanisms are small compared with

the acoustic wavelengths of interest in vascular stenosis murmurs, it is possible to make simplifying assumptions. Under

these assumptions, the basic elements of the simulated acoustic channel of noise generation and transmission can be

described quite well within the accepted limits of accuracy. As a result, the spectral and correlation characteristics of

noise field modelled will be similar to those recorded from patients.

Taking these arguments into account, we shall use the following considerations and assumptions in describing the

constructive elements of the problem to be studied in this work.

Larger blood vessel. A finite elastic thin-walled pipe of circular cross-section is chosen to represent a larger human

blood vessel. In such a pipe, only the basic vessel properties are reflected. These include mass and elasticity of the wall,

small wall-thickness/diameter ratio, a finite length and proximity of the vessel shape to cylindrical. The more

sophisticated details of the vessel geometry and wall mechanics (such as curvature, taper shape, wall tension, the layered

structure of the wall, etc.) are neglected at this stage of the qualitative study of the acoustic field of vessel and the effects

of variation in the basic vessel parameters. This is justified because these details will not have a great effect on the

qualitative results of this work (which show us what changes in the acoustic field are caused by the above variations

rather than how much these variations influence the field). Their inclusion will result in the quantitative changes in the

vibration field (i.e., the amplitudes and resonance frequencies, etc.), and hence the acoustic field of the vessel (i.e., the
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spectral levels and the position of the maxima at these frequencies, etc.). However, the quantitative effects are not the

subject of this work.

Vessel abnormality. Appearance of a stenosis is associated with changes in many vessel parameters. The most

important, from the acoustical point of view, are local reduction of the cross-sectional area of the vessel, increase in the

bending stiffness and changes in the mass density of the vessel wall. These variations greatly influence the noise source

structure within the artery, and hence the structure of the acoustic field in the body. In this paper, uniform changes

(along the vessel axis) in these parameters are considered as a first step to study acoustic effects of a vascular stenosis.

Flow. The frequency range of interest in vascular stenosis murmurs is determined by the parameters of flow, vessel

and stenosis, and usually lies between 20 Hz and 1 kHz (Borisyuk, 2000). This is high compared with the cardiac cycle

frequencies (B1 Hz). Consequently, the average flow rate changes associated with the cardiac cycle represent a slow

variation compared with the relevant disturbed flow fluctuations and associated acoustic field oscillations. As a first

order of approximation, we therefore make the usual quasi-steady assumption that during the observation of the

disturbed flow and acoustic field fluctuations the flow rate remains essentially unchanged, and consequently the

fluctuations depend mainly on the instantaneous flow rate. This investigation therefore focuses on the quasi-steady flow

problem with flow rate (or, at constant diameter of the pipe, mean axial flow velocity) as one of the physical parameters.

The next simplification is that the flow is assumed to be fully developed turbulent under any vessel conditions. This

allows the use of existing low Mach number models for turbulent wall-pressure spectra which look similar to those

formed by a localized constriction in the artery (Borisyuk, 1999, and references therein). Such a choice of the model for

the fluid loading at the vessel surface will not have a great influence on the qualitative effects of variation in the basic

vessel parameters, because (i) the difference between the fluid loadings in real blood flow and that considered here will

be significantly smoothed out due to averaging in the statistical characteristics of noise fields calculated for those

loadings; (ii) the difference between the noise fields produced by flow in the vessel before and after appearance of

abnormality (this difference is one of the basic parameters to be analysed in diagnosing the vessel state) is less sensitive

to the choice of fluid loading than the noise fields themselves.

Thorax. Since the thorax shape is close to cylindrical, and the characteristic dimensions of the thorax and the details

of its geometry are small in terms of the acoustic wavelengths of interest in vascular stenosis murmurs, the thorax can be

represented by a finite circular cylinder. Another assumption relates to the thorax tissue itself. The available data

(Borisyuk, 2000, and references therein) indicate that the tissue can be considered in the first approximation as

homogeneous acoustic medium with averaged properties. We therefore represent the tissue by such a medium, the

choice of values for the medium parameters being made in accordance with that given by Wodicka et al. (1989, 1990)

and Vovk et al. (1994a, b).

The above assumptions allow the formulation of the problem of noise generation by flow of blood into the human

thorax. The geometry under consideration is depicted in Fig. 1a. Here the thorax is represented by a finite circular

cylinder, of height H and radius R; filled with an acoustic medium of density r0; sound speed c0 and damping coefficient

m0 and surrounded by air. The medium represents the body tissue. The vessel is simulated by a finite coaxial circular

thin-walled elastic pipe, of length H; radius of midsurface a (a=R51) and wall thickness h (h=a51). The pipe wall has

the modulus of elasticity Ev;mass density rv and Poisson’s ratio nv: The flow in the pipe is fully developed turbulent, and

characterized by the mean axial velocity U : The fluid (blood) has mass density r; sound speed c and kinematic viscosity

n: The vessel is excited by turbulent wall pressure fluctuations and radiates sound into the thorax. The spectral

characteristics of the sound heard at the chest surface can then be determined and analysed in order to diagnose the

vessel state.

The formulated problem of finding the acoustic field between two finite coaxial cylinders, due to flow–pipe

interaction, is axisymmetric (i.e., @=@f ¼ 0), and governed by two coupled equations. These are the equation of the pipe

motion written for the normal velocity vðz; tÞ of the pipe wall, viz. (Junger and Feit, 1972)

Dv

@4v

@z4
þ

Evh

a2ð1� n2v Þ
v þ rvh

@2v

@t2
¼

@

@t
ð p0jr¼a � ptÞ; 0ozoH; ð1Þ

and the two-dimensional wave equation describing sound radiation by the vibrating pipe, viz. (Borisyuk, 1998; Junger

and Feit, 1972)

r2
ðr;zÞp0 �

1

%c20

@2p0
@t2

¼ 0; aoroR; 0ozoH; ð2Þ

r2
ðr;zÞ ¼

1

r

@

@r
r
@

@r

� �
þ

@2

@z2
; %c0 ¼ c0ð1þ im0Þ:
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Here ptðz; tÞ and p0ðr; z; tÞ are the turbulent pressure at the inner surface of the tube and the acoustic pressure generated
by the forced motion of the tube, respectively, Dv the pipe bending stiffness, i¼

ffiffiffiffiffiffiffi
�1

p
a complex unity, and the origin of

the cylindrical coordinate system ðr;f; zÞ is taken in the centre of the cylinder bottoms. The random turbulent pressure

field is assumed to be temporally stationary and spatially homogeneous, and Dv is related to the vessel Young’s

modulus Ev; thickness h; and Poisson’s ratio nv; by Dv ¼ Evh3=½12ð1� n2vÞ	:
Without loss of generality, the boundary conditions for the pipe can be taken as simply supported, viz. (Junger and

Feit, 1972)

vjz¼0;H ¼ 0;
@2v

@z2
jz¼0;H ¼ 0: ð3Þ

Since the wave resistance of the thorax tissue, r0c0; is much lower than that of the thorax bottom and much higher than

that of air (Borisyuk, 1998, 1999; Vovk et al., 1994b), the lower side of the outer cylinder can be treated as acoustically

rigid, and both the upper side and the lateral surface of this cylinder as pressure-released. Therefore, the boundary

conditions for Eq. (2) are written as

@p0

@z
jz¼0 ¼ 0; p0jz¼H ¼ p0jr¼R ¼ 0; ð4Þ

and the system of Eqs. (1)–(4) is completed by condition linking p0ðr; z; tÞ and vðz; tÞ at the pipe surface, viz.

�
1

r0

@p0

@r
jr¼a ¼

@v

@t
: ð5Þ

As was said in the assumptions, the effects of uniform reduction of the cross-sectional area of the vessel, increase in

the bending stiffness and changes in the mass density of the vessel wall are of interest in this study. Within the

framework of the acoustic model under discussion these changes in the vessel state can be simulated by the appropriate

variations in the geometrical and/or physical parameters of the pipe. Firstly, this is the thickening Dh of the pipe wall

(Fig. 1b) resulting both in a mild reduction of the cross-sectional area of the pipe, viz.

normal pipe: D ¼ 2a � h;

narrowed pipe: d ¼ 2a � h � Dh; ðDh=hÞmaxB1; ð6Þ

and increase in the bending stiffness Dv: The mass conservation within the pipe before and after the appearance of the

wall thickening is assumed in this case, viz.

UD2 ¼ ud2; ð7Þ

and the mean axial flow velocity in the narrowed pipe, u; is therefore written as

u ¼ UðD=d Þ2EU 1þ
Dh

2a

� �2

: ð8Þ
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Secondly, increase in the wall bending stiffness Dv can be caused by the increase in the Young’s modulus Ev and/or

Poisson’s ratio nv; and changes in the mass density of the vessel wall are obtained by the variation of the pipe parameter
rv itself.

3. Acoustic field between the cylinders

The solution to the problem (1)–(5) is obtained by taking the Fourier transform, defined here with the convention

gðkz;oÞ ¼
1

ð2pÞ2

Z H=2

�H=2

Z
N

�N

gðz; tÞe�iðkzz�otÞ dz dt; ð9Þ

and performing a modal analysis. The in vacuo normal modes CvnðzÞ of the simply supported pipe satisfy the equation

Dv
d4Cvn

dz4
� ð rvho2

vn �
Evh

a2ð1� n2vÞ
ÞCvn ¼ 0; ð10Þ

and the boundary conditions (3) and are given by the expression

CvnðzÞ ¼ sinðkvnzÞ; n ¼ 1; 2;y ð11Þ

with modal wavenumbers kvn ¼ np=H and in vacuo natural frequencies of flexural vibrations of the pipe:

ovn ¼
cv

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkvnaÞ4

h2

12a2

s
; ð12Þ

in which cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev=rvð1� n2v Þ

p
is the longitudinal wave speed in the pipe wall.

The modal equations are found by writing the velocity in Eq. (1) as an infinite sum of individual mode components,

vðz;oÞ ¼
1

2p

Z
N

�N

vðz; tÞeiot dt ¼
XN
n¼1

VnðoÞCvnðzÞ ð13Þ

and using the orthogonality properties of the normal modes, viz.Z H

0

CvnðzÞCvmðzÞ dz ¼
H=2 for m ¼ n;

0 for man:

(

This process yields

rvhðo2
vn � o2ÞVnðoÞ ¼ �io½ p0nðoÞ � ptnðoÞ	; ð14Þ

where p0nðoÞ and ptnðoÞ are of similar form and defined by

p0nðoÞ ¼
2

H

Z H

0

p0ðr ¼ a; z;oÞCvnðzÞ dz;

ptnðoÞ ¼
2

H

Z H

0

ptðz;oÞCvnðzÞ dz: ð15Þ

The acoustic pressure p0ðr; z;oÞ can be written as

p0ðr; z;oÞ ¼
XN
m¼1

Z0mðzÞ½AmðoÞJ0ða0mrÞ þ BmðoÞY0ða0mrÞ	; ð16Þ

where

Z0mðzÞ ¼ sinðk0mzÞ; k0m ¼
ð2m � 1Þp

2H
; m ¼ 1; 2;y ð17Þ

are the acoustic modes of the volume between the cylinders in Fig. 1a and the modal wavenumbers, respectively, J0ð:::Þ
and Y0ð:::Þ are cylindrical Bessel functions of zero order, and the radial wavenumbers a0m are written as

a0mðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%k20 � k2

0m

q
; ð18Þ

with acoustic wavenumber %k0 ¼ o=%c0 in the thorax tissue.
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In the form taken, expression (16) satisfies the two-dimensional Helmholtz equation

r2
ðr;zÞp0ðr; z;oÞ þ %k20p0ðr; z;oÞ ¼ 0; ð19Þ

and the boundary conditions (4) on the lower side, z ¼ 0; and upper side, z ¼ H ; of the outer cylinder. The unknown
amplitudes AmðoÞ and BmðoÞ can be found from conditions (4) and (5) at the lateral surface of the outer cylinder, r ¼ R;
and the vessel surface, r ¼ a; and the use of the orthogonality properties of the acoustic modes Z0mðzÞ; viz.Z H

0

Z0mðzÞZ0nðzÞ dz ¼
H=2 for m ¼ n;

0 for man:

(

With the coefficients AmðoÞ and BmðoÞ determined in such a manner, the expression for the random acoustic pressure

p0ðr; z;oÞ between the cylinders takes the form

p0ðr; z;oÞ ¼ i
2

H
r0o

XN
m¼1

Z0mðzÞ
a0m

F ða0m; r;RÞ
Gða0m; a;RÞ

XN
n¼1

ð�1Þn�m kvn

k2
vn � k2

0m

VnðoÞ; ð20Þ

in which

F ða0m; r;RÞ ¼ J0ða0mrÞY0ða0mRÞ � J0ða0mRÞY0ða0mrÞ;

Gða0m; a;RÞ ¼ J0ða0mRÞY1ða0maÞ � J1ða0maÞY0ða0mRÞ

are combinations of the cylindrical Bessel functions of zero and first order, and ð�1Þn�mkvn=ðk2
vn � k2

0mÞ is a term that

defines the degree of spatial compatibility of the acoustic, Z0mðzÞ; and structural, CvnðzÞ; modes, viz.Z H

0

Z0mðzÞCvnðzÞ dz ¼ ð�1Þn�m kvn

k2
vn � k2

0m

:

Substituting formula (20) into expression (15) and then into Eq. (14) yields

rvhðo2
vn � o2ÞVnðoÞ � r0o

2 2

H

� �2 XN
q¼1

ð�1ÞnþqVqðoÞ
XN
m¼1

1

a0m

F ða0m; a;RÞ
Gða0m; a;RÞ

kvq

k2
vq � k2

0m

kvn

k2
vn � k2

0m

¼ ioptnðoÞ: ð21Þ

Making an order of magnitude analysis of Eq. (21), neglecting the terms of secondary importance and rearranging

the remaining leading-order terms we obtain the approximate solution for the modal amplitudes VnðoÞ; viz.

VnðoÞ ¼
ioptnðoÞ

anðoÞ
; ð22Þ

where

anðoÞ ¼ rvhðo2
vn � o2Þ � r0o

2 2

H

� �2 XN
m¼1

1

a0m

F ða0m; a;RÞ
Gða0m; a;RÞ

k2
vn

ðk2
vn � k2

0mÞ
2
: ð23Þ

The use of expressions (22) and (23) in formulas (13) and (20) gives one the final relationships for the vessel normal

velocity, vðz;oÞ; and acoustic pressure, p0ðr; z;oÞ; respectively.
Since in the framework of the acoustic model under consideration acoustic pressure vanishes at the chest surface (see

conditions (4)), the basic parameter of the sound field to be analysed at the lateral surface of the outer cylinder is the

radial acceleration, wr; viz.

wrðr; z;oÞ ¼ �
1

r0

@p0ðr; z;oÞ
@r

¼
2

H
o2

XN
m¼1

Z0mðzÞ
a0m

dFða0m; r;RÞ=dr

Gða0m; a;RÞ

XN
n¼1

ð�1Þn�m kvn

k2
vn � k2

0m

ptnðoÞ
anðoÞ

: ð24Þ

The spectral density Pwðr; z;oÞ of the random field wrðr; z;oÞ can be obtained from the relationship of statistical

orthogonality (Blake, 1986), i.e.,

Pwðr; z;oÞdðo� o0Þ ¼ /wn

r ðr; z;oÞwrðr; z;o0ÞS; ð25Þ
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in which the brackets /:::S denote an ensemble average, dð:::Þ is the Dirac delta function, and the asterisk denotes a

complex conjugate. When the radial acceleration (24) is substituted into expression (25), the spectral density becomes

Pwðr; z;oÞ ¼
XN
m¼1

XN
n¼1

ðPwðr; z;oÞÞmn

¼
2

H
o2

� �2 XN
m¼1

jZ0mðzÞj2

ja0mj2
jdF ða0m; r;RÞ=drj2

jGða0m; a;RÞj2
XN
n¼1

k2
vn

ðk2
vn � k2

0mÞ
2

Fpn
ðoÞ

janðoÞj2
; ð26Þ

where Fpn
ðoÞ are the structural modal excitation terms, defined in terms of the wavenumber–frequency spectrum of the

turbulent wall pressure, Fpðkz;oÞ; and the shape functions of the pipe

jAvnðkzÞj
2 ¼

2k2
vn

ðk2
z � k2

vnÞ
2
½1� ð�1Þn cosðkzHÞ	;

as

Fpn
ðoÞ ¼

Z
N

�N

jAvnðkzÞj
2Fpðkz;oÞ dkz: ð27Þ

Thus, the spectral density, Pwðr; z;oÞ; of a radial acceleration at point ðr; zÞ is a sum of individual mode contributions,

ðPwðr; z;oÞÞmn: The modal spectral densities ðPwðr; z;oÞÞmn are determined by the following four factors. Firstly, this is

the degree of excitation of the pipe normal mode, CvnðzÞ; by the turbulent wall pressure which is represented in (26) by

the modal excitation term FpnðoÞ: This term depends on the amplitudes of the wall pressure components and their

spatial correlations with the mode CvnðzÞ: Secondly, this is the degree of spatial compatibility of the structural, CvnðzÞ;
and acoustic, Z0mðzÞ;modes given by the quantity k2

vn=ðk
2
vn � k2

0mÞ
2: Thirdly, ðPwðr; z;oÞÞmn is influenced by the structural

response term anðoÞ in which the resonant properties of the pipe mode CvnðzÞ are reflected. Finally, these are the

remaining terms in expression (26), whose combination is the transfer function of the volume between the cylinders.

This function contains the geometrical characteristics of the vessel and thorax, and acoustical properties of the chest

volume (such as cut-off frequencies, acoustic resonances), and describes propagation of the sound wave from the vessel

to the chest surface.

All information with respect to the pipe parameters and the mean flow velocity within the pipe is mainly contained in

the structural response term, anðoÞ; and the wavenumber–frequency spectrum, Fpðkz;oÞ; of the turbulent wall pressure,
respectively, and hence, via formulas (26) and (27), in the spectrum Pwðr; z;oÞ: Any changes in these parameters will be

reflected in the function Pwðr; z;oÞ: Therefore, this statistical characteristic of the random acoustic field can be used to

diagnose the vessel state by changes in the field caused by vessel abnormality.

4. Analysis of the acoustic field

The analysis of the acoustic field found in the previous section is divided into the analysis of the spectrum Pw

itself and the effects of variation in the pipe and flow parameters. Also the approximate dependence of the

acoustic power generated by the pipe on the flow Reynolds number, ReD ¼ UD=n; and the diameter ratio, D=d ; is
derived.

In calculating expression (26), the following values of the geometrical and physical parameters have been used:

a ¼ 1 cm; h ¼ 2 mm; Ev ¼ 1:35� 105 N=m2; rv ¼ 1:15� 103 kg=m3; nv ¼ 0:45; r ¼ 1050 kg=m3; c ¼ 1500 m=s; n ¼
4� 10�6 m2=s; U ¼ 0:5–1 m=s; R ¼ 0:2 m; H ¼ 0:4 m; r0 ¼ 300 kg=m3; c0 ¼ 30 m=s; m0 ¼ 0:25:
These magnitudes agree well with those cited in other papers (Borisyuk, 1998, 1999; Vovk et al., 1994a, b; Fredberg

and Holford, 1983; Wang et al., 1990; Wodicka et al., 1989, 1990), and are typical for patients. The turbulent wall

pressure model of Chase (1980), written for the case of one-dimensional flow, was chosen for Fpðkz;oÞ; viz.

Fpðkz;oÞ ¼ r2v3
*
½cMk2

z K�5
M þ cT k2

z K�5
T 	; K2

i ¼ ðo� UckzÞ
2=ðhiv* Þ

2 þ k2
z þ ðbidÞ

�2; i ¼ M;T ; ð28Þ

with the dimensionless coefficients hMEhTE3; cT ¼ 0:0474; cM ¼ 0:0745; bT ¼ 0:378 and bM ¼ 0:756; recommended
by Chase. This model was shown by Borisyuk (1993, 1998), Borisyuk and Grinchenko (1997) to give the best

predictions of noise from low Mach number turbulence.
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4.1. Acoustic power spectrum

Typical estimate of the spectrum Pwðr; z; f Þ normalized by the quantity ð8p2f 2=HÞ2 � p2rmsa=U is shown in Fig. 2.

Here prms is the root-mean-square turbulent wall pressure defined as

prms ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
/p2t S

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
N

�N

PðoÞ do

s
;

PðoÞ is the wall pressure power spectrum, and Pwðr; z; f Þ ¼ 4pPwðr; z;oÞ (Blake, 1986).
One can see that the spectrum Pw predicted within the frameworks of the acoustic model under investigation looks

generally similar to the acoustic power spectrum recorded in the in vitro experiments (Borisyuk, 2000); namely, it

generally decreases as the frequency increases, and exhibits local pronounced maxima.

The analysis of sound generation by the turbulence in the vessel and sound transmission from the vessel to the chest

surface shows that

(i) the decrease of the function Pw with the frequency is determined mainly by both the distribution of the turbulence

energy among different eddies and frequency filtering of the sound transmission due to the body tissue;

(ii) the maxima in the spectrum Pw are caused by the corresponding maxima in the functions describing in Eq. (26)

the constructive elements of the acoustic model.

In fact, the influence of the turbulence on the spectrum Pw is reflected in formula (26) via the wavenumber–frequency

spectrum of the turbulent wall pressure, Fpðkz;oÞ: A specific feature of the wavenumber–frequency spectrum (see

Fig. 3a) is that, under low Mach number condition (that takes place in blood vessels), the acoustic field from turbulence

is dominated by the contribution from the long-wavelength subconvective wall pressure components, 0okz5kc ¼
o=Uc; which are determined by the large-scale eddies (Borisyuk, 1998). These components excite the high-efficient long-
wavelength structural modes Cvn ð0okvn5kc) which then generate the propagating long-wavelength acoustic waves.

The short-wavelength convective wall pressure components, kzEkc; play practically no role in producing noise by low

Mach number turbulent flows. It means that the modal excitation term Fpn
ðoÞ in expression (26) can be rewritten as

Fpn
ðoÞE

Z
0okz5kc

jAvnðkzÞj2Fpðkz;oÞ dkz ¼ PðoÞ
Z
0okz{kc

jAvnðkzÞj2Fp *
ðkz;oÞ dkz; ð29Þ

where Fpðkz;oÞ ¼ PðoÞFp *
ðkz;oÞ; and Fp*

ðkz;oÞ is the wavenumber–frequency spectrum normalized to unity (Blake,

1986; Borisyuk, 1993), viz.Z
N

�N

Fp*
ðkz;oÞ dkz ¼ 1:

Representation (29) of the quantity Fpn
ðoÞ indicates that the frequency content of the acoustic power, carried with

the long-wavelength sound waves, is actually governed by the wall pressure power spectrum PðoÞ: In this spectrum (see

Fig. 3b), the low-frequency domain is controlled primarily by the large-scale eddies which contain the bulk of the

turbulence energy. The high-frequency domain of the function PðoÞ corresponds to the small-scale vortex structures

which carry a little part of the energy. As a result here the spectral level is much lower than that in the low-frequency

ARTICLE IN PRESS

Fig. 2. Acoustic power spectrum at point r ¼ R; z ¼ 0:5H generated by the conditionally normal pipe at the mean flow rate 1:27�
10�4 m3=s ðU ¼ 0:5 m=s; ReD ¼ 2250).
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range, the level decreasing rapidly with frequency (it corresponds to the decrease in the vortex energy with the decrease

of its size).

Such distribution of the turbulence energy among the eddies results in that the main part of the acoustic energy

radiated by the vibrating vessel travels with the low-frequency long-wavelength sound waves. The other sound waves

contain much less acoustic energy, the energy decreasing with frequency.

In travelling from the vessel to the chest surface, the sound waves undergo the influence of the body tissue, which is

reflected in the transfer function in expression (26). The tissue has been shown by Vovk et al. (1994a) to act as a low-

frequency filter. In other words, the body allows propagation of the low-frequency content and filters off the high-

frequency content of the sound field. As a result the low-frequency sound waves reach the chest surface, whereas the

high-frequency waves have much difficulties and lose much energy in reaching the body surface. This explains the

general decrease of the sound level with frequency at the chest surface, as shown in Fig. 2.

The maxima in the spectrum Pw observable in Fig. 2 result from the corresponding maxima in the functions

representing in Eq. (26) the constructive elements of the acoustic model under investigation. Firstly, these are the peaks

at the resonance frequencies of the vibrating pipe (Table 1) which are contained in the structural response term, anðoÞ:
Secondly, the acoustic resonances of the chest volume (they are reflected in the quantity G of the transfer function)

produce the corresponding peaks in the spectrum Pw at the frequencies given in Table 2. Finally, the maxima at the

frequencies presented in Table 3 correspond to the cut-off frequencies of the body volume, om ¼ c0k0m: These maxima
appear in the transfer function when the wavenumber a0m reaches the minimum.

4.2. Effects of the pipe parameters

4.2.1. Effects of the wall thickness

The influence of the wall thickening Dh on the acoustic power spectrum can be seen from Fig. 4 where the spectra

produced by two pipes of different wall thickness at the same mean flow rate, UpD2=4 ¼ upd2=4; are presented. The
comparison of the curves shows that the sound levels from the thickened pipe of mild severity S ¼ 14%; quantified as

S ¼ ½1� ðd=DÞ2	 � 100%EDh=a � 100%; ð30Þ
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Fig. 3. (a) Wavenumber–frequency spectrum of the turbulent wall pressure, Fpðkz;oÞ; and shape function of the pipe, jAvnðkzÞj2: (b)
Wall pressure power spectrum, PðoÞ:

Table 1

Resonance frequencies of the pipe

Mode number 1 2 — 10 — 15 — 20 — 30 —

Frequency, Hz 193.15 193.1502 — 193.27 — 193.76 — 195.1 — 202.84 —

Table 2

Acoustic resonances

Resonance number 1 2 3 4 5 6 7 8 9 —

Frequency, Hz 134.3 177.5 200.9 237.5 256.2 293.7 327.5 347.5 360.8 —
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are noticeably higher than those from the conditionally normal pipe, the difference between the levels generally

decreasing as the frequency increases. Also there is the difference between the location of the maxima in curves 1 and 2

in the frequency band 190 Hzofo230 Hz (these maxima are associated with the pipe resonances at the frequencies

ovn). The location of the other peaks (corresponding to the cut-off frequencies and the acoustic resonances of the chest

volume) does not change in transiting from curve 2 to curve 1.

The same modification of the acoustic power spectrum due to thickening of the pipe wall (i.e., nonuniform growth of

the level and the displacement of the maxima at the frequencies ovn) was obtained also for the other estimates of

expression (26). This indicates that thickening of the vessel wall is associated with the two basic acoustic effects. These

are a general increase in the sound level and the shift (to the right) of the peaks at the vessel natural frequencies in the

acoustic power spectrum. The latter effect can be treated as the production of new frequency components.

The first effect is explained by that, under the mass conservation condition (7), increase in the wall thickness causes

both an increase in the local flow energy (i.e., from the value of order rU2 in the conditionally normal pipe to ru2 in the

partially constricted pipe) and redistribution of the energy among the appropriate flow scales (i.e., mainly from the large

eddies of sizes of order D=2 moving at speeds of order U in the normal pipe to the large vortices of dimensions of order

d=2 which are convected at speeds of order u in the narrowed pipe). This leads to the higher amplitudes of the turbulent

wall pressure pt; and hence the higher levels of the wall pressure spectra PðoÞ and Fpðkz;oÞ (the changes in the power

spectrum PðoÞ are herewith such that the spectrum level grows mainly in the low-frequency domain determinable by the

large vortex structures; see Fig. 5). Such variations in the noise source structure then are reflected in the modal

excitation term (29), and, via Eq. (26), result in the corresponding nonuniform increase of the sound level, as shown in

Fig. 4.

The second effect of wall thickening is due to the corresponding increase in the pipe resonance frequencies (12) and

the subsequent displacement (to the right) of the maxima at ovn in the spectrum Pw:
The other peaks in the function Pw are attributed to the cut-off frequencies and the acoustic resonances of the body.

The body properties are insensitive to the changes in the vessel parameters. Consequently, variations in the vessel

thickness do not influence these two groups of the frequencies, and hence the location of the corresponding maxima in

the spectrum Pw:

4.2.2. Effects of the physical parameters of the pipe wall

Variations in Young’s modulus of the pipe wall, Ev; result in the corresponding variations in both the bending

stiffness, Dv; and the resonance frequencies, ovn: The fluid flow and the turbulent wall pressure pt do not change
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Fig. 4. Acoustic power spectra at point r ¼ R; z ¼ 0:5H generated by two pipes of different wall thickness at the mean flow rate

1:27� 10�4 m3=s (U ¼ 0:5 m=s; ReD ¼ 2250); 1� h þ Dh ¼ 3:4 mm; S ¼ 14%; 2� h ¼ 2 mm:

Table 3

Cut-off frequencies

Frequency number 1 2 3 4 5 6

Frequency, Hz 18.75 56.25 93.75 131.25 168.75 206.25

Frequency number 7 8 9 10 11 —

Frequency, Hz 243.75 281.25 318.75 356.25 393.75 —
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herewith within the framework of the acoustic model under investigation. In such situation, the sound levels and the

positions of the maxima in the spectrum Pw must change in the appropriate way, namely, increase in the value of Ev

must cause, on the one hand, the increase in the bending stiffness Dv; and hence, under the invariable exciting force pt;
the decrease in both the amplitude of the pipe vibration and sound levels radiated. On the other hand, resonance

frequencies (12) must increase, which result in the shift (to the right) of the maxima at the frequencies ovn in the

spectrum Pw:
Decrease in the modulus of elasticity must cause an increase of the sound levels and displacement (to the left) of the

peaks at the frequencies ovn:
This is demonstrated in Fig. 6 where the acoustic power spectra from two pipes having the different values of

Young’s modulus are depicted. The comparison of the curves shows that the small increase/decrease in Ev causes the

small decrease/increase of the sound levels generated and the shift (to the right/left) of the maxima at the natural

frequencies ovn in the range 180 Hzofo210 Hz: The other maxima correspond to the cut-off frequencies and the

acoustic resonances of the body volume, and therefore their position is insensitive to the variations in the Young’s

modulus.

Similar changes in the spectrum Pw result from the variations in Poisson’s ratio nv (Fig. 7). A small decrease/increase

in the quantity nv is seen to cause a small increase/decrease of the sound levels and the displacement (to the left/right) of

the peaks at the natural frequencies ovn in the range 180 Hzofo210 Hz:
A small decrease/increase in the mass density of the pipe wall, rv; is associated with a shift (to the right/left) of the

maxima at the frequencies ovn in the range 190 Hzofo230 Hz and a small increase/decrease of the acoustic power

levels (Fig. 8).

The explanation of the effects found in Figs. 7 and 8 is similar to the Young’s modulus effects.

The above cases of separate variations in the vessel parameters are, in principle, possible but not very realistic. More

realistic are situations when appearance of a stenosis is associated with simultaneous changes either in all the
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Fig. 6. Acoustic power spectra at point r ¼ R; z ¼ 0:5H generated at the mean flow rate 1:27� 10�4 m3=s (U ¼ 0:5 m=s;
ReD ¼ 2250); 1� Ev ¼ 1:2� 105 N=m2; 2� Ev ¼ 1:35� 105 N=m2:

Fig. 5. Power spectrum (a) and wavenumber–frequency spectrum (b) of the turbulent wall pressure in conditionally normal (curve 1)

and thickened (curve 2) pipes.
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parameters considered or in some of them (including the wall thickness h). In this case, the modifications in the

spectrum Pw will evidently be the combination of the modifications found above.

4.3. Mean flow velocity effects

It is well known in medical practice (Mirolyubov, 1983; Young, 1979) that the difference between the noise levels

from the stenosed and originally healthy vessels (which is one of the basic parameters to be analysed in diagnosing the

vessel state) depends on flow rate. This results in that, under resting flow conditions (the patient rests), the difference

can be so small that rather strong stenosis cannot be detected. However, under elevated flow conditions (manual

labour), the difference increases, and the stenosis becomes detectable. It is interesting to see whether this effect can be

predicted within the frameworks of the acoustic model under investigation.

For this purpose, the noise spectra from the conditionally normal pipe and from the pipe having the other value of

one of the wall parameters were calculated for the different mean flow velocities and compared. One can see from

Figs. 4 and 9 that the difference between the sound levels from the thickened and normal pipes increases with U and

vice versa, the decrease in U results in the reduction of the difference.

Such changes in the difference between the sound levels with the mean flow velocity correlate qualitatively well with

those noted above. The explanation of this velocity effect is similar to the explanation of the effects found in Section 4.2.

It is based on the analysis of variations of the appropriate terms in expression (26) with U ;made for the cases of normal
and thickened pipes.

Variations in the physical parameters of the pipe wall were said in Section 4.2 not to influence the fluid flow.

Consequently, the flow is identical within the conditionally normal pipe and the pipe having the other value of some

physical parameter. In such a situation, the changes in the mean flow velocity will equally influence the sound fields
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Fig. 7. Acoustic power spectra at point r ¼ R; z ¼ 0:5H generated at the mean flow rate 1:27� 10�4 m3=s (U ¼ 0:5 m=s;
ReD ¼ 2250); 1� nv ¼ 0:3; 2� nv ¼ 0:45:

Fig. 8. Acoustic power spectra at point r ¼ R; z ¼ 0:5H generated at the mean flow rate 1:27� 10�4 m3=s (U ¼ 0:5 m=s;
ReD ¼ 2250); 1� rv ¼ 1:05� 103 kg=m3; 2� rv ¼ 1:15� 103 kg=m3:
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from the pipes. As a result, there will be no changes in the difference between the sound levels from the pipes with U ; as
was obtained in the appropriate calculations of this study.

4.4. Dependence of the acoustic power on ReD and D=d

The modifications in the spectrum Pw with the pipe thickness and the mean flow velocity were demonstrated in

Sections 4.2.1 and 4.3, respectively. It was shown that, apart from the other effects, a mild increase in the wall thickness

and/or the mean flow velocity causes an increase in both the acoustic power level and a difference between the levels

from the thickened and conditionally normal pipes. Those data were, however, of a qualitative character. In order to

know how much the indicated parameters influence the sound field, it is necessary to have the corresponding

quantitative estimates.

Some of these estimates can be obtained from the following arguments. The pressure fluctuations in the pipe flow are

directly proportional to the fluid mass density and the second power of the mean flow velocity (Blake, 1986). This gives

for the thickened pipe:

pt B ru2;

or taking into account formula (8), this expression becomes

pt B rU2ðD=d Þ4ErU2 1þ
Dh

2a

� �4

:

The normal velocity of the vessel wall, v; and the acoustic pressure in the thorax, p0; can be written as

v ¼ pt � Tv; p0 ¼ v � Tb ¼ pt � TvTb;

where Tv and Tb are the functions reflecting the vessel and thorax properties, respectively.

The acoustic power produced by the vibrating vessel, P; then can be written as

PBp20Br2U4ðD=d Þ8 � T2
v T2

bEr2U4 1þ
Dh

2a

� �8

�T2
v T2

b :

Introducing the fluid viscosity, n; in this relationship gives

PBðReDÞ
4ðD=d Þ8 �

r2n4

D4
T2

v T2
bEðReDÞ

4 1þ
Dh

2a

� �8

�
r2n4

D4
T2

v T2
b :

For a given pipe, fluid and acoustic medium between the pipe and the cylinder, the magnitude r2n4T2
v T2

b=D4 is constant

and therefore,

PBðReDÞ
4ðD=d Þ8EðReDÞ

4 1þ
Dh

2a

� �8

: ð31Þ
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Fig. 9. Acoustic power spectra at point r ¼ R; z ¼ 0:5H generated by two pipes of different wall thickness at the mean flow rate

2:03� 10�4 m3=s (U ¼ 0:8 m=s; ReD ¼ 3600); 1� h þ Dh ¼ 3:4 mm; S ¼ 14%; 2� h ¼ 2 mm:
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This relationship agrees reasonably well with that obtained experimentally by Borisyuk (2000), and indicates that the

acoustic power from a slightly thickened pipe is approximately proportional to the fourth power of the flow Reynolds

number in the originally normal pipe and the eighth power of the ratio of the pipe diameters.

Using similar arguments, it is easy to show that the difference in the acoustic power produced by thickened and

originally normal vessels, DP; is

DPBðReDÞ
4½ðD=d Þ8 � 1	: ð32Þ

The difference is seen to increase as the flow Reynolds number, ReD; and/or the diameter ratio, D=d; increase. This
correlates well with the appropriate effects of the mean flow velocity and wall thickness found in Sections 4.3 and 4.2.1,

respectively.

Writing the ratio of the acoustic powers from two thickened vessels of differing severities, P1 and P2; we have

P1

P2
B

d8
2

d8
1

:

This relationship indicates that an approximately 30% decrease in the vessel diameter (i.e., d2=d1E1:33) causes a

10-fold increase in the radiated acoustic power (one order of magnitude).

5. Conclusions

An acoustic generation of noise by a larger human blood vessel and noise transmission in the thorax have been

modelled and studied in this work. In doing this, the random statistical nature of the noise sources, the basic vessel

properties and the main features of the human chest structure have been taken into account. Also the effects of changes

in the basic vessel parameters have been considered as a first attempt to study acoustic effects of a vascular stenosis. The

corresponding results obtained and their analysis allow one to make the following conclusions.

1. In the framework of the proposed acoustic model of noise generation and transmission, a relationship (26) has

been obtained. It relates the acoustic power spectrum in the body to the vessel and flow parameters, and also reflects the

influence of the human thorax on the acoustic field.

2. Predictions for the acoustic power spectrum, made for the typical vessel and flow conditions, show that the

spectrum looks generally similar to the acoustic power spectrum observable in in vitro studies.

3. Mild thickening of the vessel wall causes noticeable increase in the sound level and a shift (to the right) of the peaks

at the vessel resonance frequencies in the acoustic power spectrum.

Small increase/decrease in Young’s modulus of the vessel wall results in a small decrease/increase in the sound level

and a displacement (to the right/left) of the maxima at the vessel natural frequencies in the acoustic power spectrum.

Similar changes in the spectrum are caused by small variations either in Poisson’s ratio or the mass density of the vessel

wall.

Variations in the acoustic power spectrum caused by simultaneous changes either in all the vessel parameters

considered or in some of them will be the combination of the variations noted above.

4. The acoustic power generated by a slightly thickened (deseased) vessel is approximately proportional to the fourth

power of the flow Reynolds number in the originally normal (healthy) vessel and the eighth power of the ratio of the

vessel diameters (see expression (31)).

The difference in the sound power from the vessels increases as the diameter ratio and/or the flow Reynolds number

increase, as given by formula (32).

5. An approximately 30% decrease in the vessel diameter causes a 10-fold increase in the radiated acoustic power (one

order of magnitude).

6. The proposed acoustic model is only a first step in modelling noise generation by a larger human blood vessel and

noise transmission in the body. The model is based on rather general assumptions and, therefore, the results obtained

and the corresponding conclusions made in this study are essentially qualitative. Other investigations of the fluid

loading in arterial blood flow, as well as research into the properties of vessels and the human chest are necessary in

order to improve the model.
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